國立交通大學 101 學年度第 4 學期 博士班資格考筆試考試試題

土木工程學系 資訊組(己) 科目:人工智慧在土木工程之應用 選考學生數:1 考試時間: 60 min

共 1 頁,第1 頁

注意:請選其中三題作答!

- 1. You are given a set of rules: Should we buy a house or not?
 - R1: IF inflation is low

THEN interest rates are low (CF=0.82)

ELSE interest rates are high (CF = 0.9)

R2: IF interest rates are high

THEN housing prices are high (CF = 0.75)

R3: IF housing prices are high

THEN do not buy a house (CF=0.68)

ELSE buy it (CF = 0.85)

- a. Run a backward chaining with a high inflation rate as given.
- b. Run a forward chaining with a low inflation rate as given.
- Prepare an inference tree for the backward chaining case.
- d. Calculate the corresponding certainty factor (CF) of your answer.
- 2. 知識表示法(knowledge representation approaches)為知識庫系統(knowledge-based system)或知識管理(knowledge management, KM)系統中重要的關鍵技術。試舉四種知識表示法,並說明其優缺點。
- 3. In artificial neural networks (ANN) domains, error back-propagation (BP) is one of important learning models.
 - (a) Please present the flowchart of error back-propagation (BP) learning algorithm.
 - (b) What is the main function for momentum term in conventional BP algorithm?
 - (c) Can we normalize the outputs in the interval of [0, 1] as the sigmoid function $1/(1+e^{-x})$ is utilized? Why?
 - (d) Please derive the $\Delta w_{kj} = -\mu \frac{\partial E(W)}{\partial w_{kj}}$ for weights between output layer and hidden layer. Here, system error is defined as

$$E = \frac{1}{2P} \sum_{p=1}^{P} (d_p - o_p)^2$$

where P is number of training instances. d_p and o_p are the desired and computed output for the pth training instance.

- 4. Please use "4R" diagram or relations to describe case-based reasoning (CBR) model and also compare with CBR with other AI system (e.g. production system) for advantages vs. disadvantages.
- 5. What is competitive learning? Derive the competitive learning algorithm.

國立交通大學 101 學年度第 2 學期 博士班資格考筆試考試試題

土木工程學系 資訊組(己) 科目:演算法 選考學生數:1 考試時間: 60 min

共 1 頁,第 1 頁

- 1. Use the master method to give tight asymptotic bounds for the following recurrences.
- (a) T(n)=4T(n/2)+n.
- (b) $T(n)=4T(n/2)+n^2$.
- (c) $T(n)=4T(n/2)+n^3$.
- 2. Illustrate the operation of BUILD-MAX-HEAP on the array A=<15, 32, 7, 1, 8, 9, 26, 2, 99>.
- 3. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is <5,10,3,12,5,50,6>.
- 4. Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:
 - $x_1 x_2 \le 4$
 - $x_1 x_5 \le 5$
 - $x_2 x_4 \le -6$
 - $x_3 x_2 \le 1$
 - $x_4 x_1 \le 3$
 - $x_4 x_3 \le 5$
 - $x_4 x_5 \le 10$
 - $x_5 x_3 \le -4$
 - $x_5 x_4 \le -8$
- 5. Prove that the vertex cover problem is NP-complete.