國立交通大學 101 學年度第 1 學期 博士班資格考筆試考試試題

資訊組(己) 土木工程學系

科目:資料探勘研究與實務

選考學生數:1

考試時間: 60 min

共2頁,第1頁

1. A database has six transactions. Let min sup=60% and min_conf=90%.

(10%) List all of the strong s and confidence c)	TID	DATE	ITEMS_BOUGHT		
	T1	14/11/11	B, C, D, F		
metarule, where X is a	T2	14/12/11	A B, C, E, F		
and item; denotes variables		14/01/12	AB, E		
"B", etc.):	T4	14/02/12	A, B, C, D, E, G		
Manager Land W. St.	T5	14/03/12	C E F G		

 $\forall x \in transaction, buys(X, item_1) \land buys(X, item_2) \Rightarrow buys(X, item_3)[s, c]$

association rules (with support following matching the variable representing customers representing items (e.g., "A",

2. (10%) Given the following large (frequent) 3-itemsets:

nemsets.	
< 1 2 3 >]
< 1 2 4 >	
< 1 3 4 >	-
< 1 3 6 >	1
< 2 3 4 >	1
< 2 3 5 >	
< 2 4 5 >	
< 3 4 5 >	

- (a) Find the candidate 4-itemsets according to the apriori-generate algorithm.
- (b) Find the candidate 4-itemsets after pruning.
- 3. You need to use examples or draw diagrams to aid your explanations.
- (a) (5%) Briefly explain what is the Vector Space Model (VSM)
- (b) (5%) Briefly explain tf_{ij} , $\log \frac{N}{df_i}$ and the formula $w_{ij} = tf_{ij} \times \log \frac{N}{df_i}$ (for term T_j of the document D_i).
- (c) (5%) Explain how to use the k Nearest Neighbors (kNN) approach for document classification.
- (d) (5%) Explain how to derive the category vector and use the Category vector for document classification (categorization).
- 4. There are two classifiers (test drugs) C1 and C2 for tumor. Suppose that there are 40% people having tumor in a city.
- (a) (5%) For tumor patients, there are 30% positive by C1. For patients who don't have tumor, there are 40% positive by C1. Compute the Precision, Recall, and Accuracy of the classifier C1.
- (b) (5%) For patients who don't have tumor, there are 20% negative by C2. Suppose that the precision of the classifier C2 is 20%. What are the Accuracy and Recall of the classifier C2?

5. (10%) Use the similarity matrix in the following table to perform **complete link** hierarchical clustering. Show your results by drawing a dendrogram. The dendrogram should clearly show the order in which the points are merged.

Table 3

	P1	P2	P3	P4	P5
P1	1	0.33	0.96	0.54	0.78
P2	0.33	1	0.65	0.94	0.46
P3	0.96	0.65	1	0.58	0.25
P4	0.54	0.94	0.58	1	0.37
P5	0.78	0.46	0.25	0.37	1

6.

- (a) (10%) Explain the concept of support vectors, maximum marginal hyperplane and linear separation between classes in SVM (Support Vector Machines). You should draw a diagram in a 2-D plane to aid your explanation.
- (b) (5%) Suppose that the two parallel hyperplanes for the decision boundary are:

$$\mathbf{w} \bullet \mathbf{x} + \mathbf{b} = 1$$

$$\mathbf{w} \bullet \mathbf{x} + \mathbf{b} = -1$$

Explain why maximizing the margin is equivalent to minimizing the following objective function:

$$f(w) = ||w||^2 / 2$$
.

(c) (5%) Explain the usage of Kernel function. Use the following example to assist your explanation.

$$\Phi(u) = (u_1^2, u_2^2, \sqrt{2}u_1, \sqrt{2}u_2, 1); \Phi(v) = (v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, 1); \Phi(u) \bullet \Phi(v) = ?$$

7.

- (a) (10%) Explain the basic concept of EM (Expectation-Maximization) clustering. What are the differences between K-means and EM clustering in terms of the assignment of data points to clusters and the computation of centroids / model parameters?
- (b) (10%) Given the following two mixture models (1) and (2).

Which one has higher expected likelihood? Why?

$$P(\mathbf{O}|\mathbf{\Theta}) = \prod_{i=1}^{n} \sum_{j=1}^{k} \omega_{j} P_{j}(o_{i}|\Theta_{j})$$

(2)

國立交通大學 101 學年度第 1 學期 博士班資格考筆試考試試題

土木工程學系 資訊組(己)

科目:水資源規劃

選考學生數:1

考試時間: 60 min

共2頁,第1頁

1. 某一水資源計劃估計在完成後至第5年末時每年增加20,000元的收益,第6年~第20年末收益維持100,000元,接著每年逐年遞減10,000元直至30年末,假設利率5%,請問收益現值為何?(25%)

TABLE 2.1.1 Summary of discounting factors

Type of Discount Factor	Symbol	Given*	Find	Factor	
Single-Payment Factors			- · · · · · · · · · · · · · · · · · · ·		
Compound-amount factor	$\left(rac{F}{P},i\%,n ight)$	P	F	$(1+i)^n$	P=\$1 F
Present-worth factor	$\left(rac{P}{F},i\%,n ight)$	F	P	$\frac{1}{(1+i)^n}$	P F=\$1
Uniform Annual Series Factors					, , , ,
Sinking-fund factor	$\left(\frac{A}{F}, i\%, n\right)$	F	A	$\frac{i}{(1+i)^n-1}$	F = \$1 A A A A A
Capital-recovery factor	$\left(rac{A}{P},i\%,n ight)$	P	A	$\frac{i(1+i)^n}{(1+i)^n-1}$	$P = \$1$ $A \mid A \mid A \mid A \mid A \mid A$
Series compound-amount factor	$\left(rac{F}{A},i\%,n ight)$	A	F	$\frac{(1+i)^n-1}{i}$	A = \$1 F A, A, A, A, A
Series present-worth factor	$\left(rac{P}{A},i\%,n ight)$	A	P	$\frac{(1+i)^n-1}{i(1+i)^n}$	$P \qquad A = \$1$ $A_1 A_1 A_1 A_1 A_2$
iform Gradient Series Factors					
Uniform gradient series present-worth factor	$\left(rac{P}{G},i\%,n ight)$	G	P	$\frac{(1+i)^{n+1} - (1+ni+i)}{i^2(1+i)^n}$	$\begin{array}{c cccc} P & G = \$1 & G \\ G = \$1 & G & \Xi \\ G & \Xi & \Xi \\ \end{array}$

^{*}The discount factors represent the amount of dollars for the given amounts of one dollar for P, F, A and G.

2. 兩個水資源開發方案,若已知資金利率為 10%,而且無須考慮稅賦支出,請使用益本比法建議應採取哪一方案? (25%)

	方案甲	方案乙
經濟壽命	40 年	20 年
殘值	15	12
每年效益	25	22
每年營運維修成本	5	3
期初成本	300	160

3. 有一水資源系統如下圖所示,水庫之進水量在豐水期為 3.3 單位(每單位10⁸ m³),枯水期為 1.4 單位,水庫下游支流流入量在豐水期為 0.7 單位,枯水期為 0.6 單位。假設若灌溉需求水量豐水期為 2 單位,枯水期為 4 單位,若水庫之供水效益為(10*供水量),而水庫投資(含營運、維護)成本之為 22*Y,Y為水庫容量,(a). 請寫出在最佳利益(效益-成本)考量下之最佳規劃數學模式,包含變數定義、目標函數及限制式。(b).在最佳利益(效益-成本)下之水庫庫容及豐枯雨季之供水量為何?(25%)

水源調配系統圖

4. (a) 請簡述多目標規劃問題與單目標規劃(優選)問題之主要差異,及(b)以簡圖說明何謂多目標規劃問題之非劣勢解(柏拉圖解)。 (25%)